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Circulating nutrients are essential indicators for overall health 
and body function1. Amino acids (AAs), sourced from 
dietary intake and gut microbiota synthesis, and influenced 

by personal lifestyles, are important biomarkers for a number of 
health conditions (Fig. 1a)2. Elevated branched-chain amino acids 
(BCAAs), including leucine (Leu), isoleucine (Ile) and valine (Val), 
are associated with obesity, insulin resistance and future risk of 
type 2 diabetes mellitus (T2DM), cardiovascular diseases (CVDs) 
and pancreatic cancer3–5. Deficiencies in AAs (for example, argi-
nine and cysteine) could hamper the immune system by reduc-
ing immune-cell activation6. Tryptophan (Trp), tyrosine (Tyr) and 
phenylalanine (Phe) are precursors of serotonin and catecholamine 
neurotransmitters (dopamine, norepinephrine and epinephrine), 
respectively, and play an important role in the function of complex 
neural systems and mental health7,8. A number of metabolic finger-
prints (including Leu, Phe and vitamin D) are linked to coronavirus 
disease 2019 (COVID-19) severity9,10. Health disparities in nutri-
tion also correlate well with the alarming racial and ethnic dispari-
ties that are worsened by COVID-19 vulnerability and mortality11. 
Moreover, organ and tissue dysfunction induced by severe acute 
respiratory syndrome coronavirus 2 could result in an increased 
incidence of cardiometabolic diseases12.

Metabolic profiling and monitoring are a key approach to 
enabling precision nutrition and precision medicine13. Current gold 
standards in medical evaluation and metabolic testing heavily rely 
on blood analyses that are invasive and episodic, often requiring 
physical visits to medical facilities, labour-intensive sample pro-
cessing and storage, and delicate instrumentation (for example, 
gas chromatography–mass spectrometry (GC–MS))14. As the cur-
rent COVID-19 pandemic remains uncontrolled around the world, 
there is a pressing need for developing wearable and telemedicine 

sensors to monitor an individual’s health state and to enable timely 
intervention under home- and community-based settings15–23; it is 
also increasingly important to monitor a person’s long-term cardio-
metabolic and nutritional health status after recovery from severe 
COVID-19 infection using wearables to capture early signs of 
potential endocrinological complications such as T2DM12.

Sweat is an important body fluid containing a wealth of chemicals 
reflective of nutritional and metabolic conditions24–27. The progres-
sion from blood analyses to wearable sweat analyses could provide 
great potential for non-invasive, continuous monitoring of physio-
logical biomarkers critical to human health28–38. However, currently 
reported wearable electrochemical sensors focus primarily on a 
limited number of analytes including electrolytes, glucose and lac-
tate, owing to the lack of a suitable continuous monitoring strategy 
beyond ion-selective and enzymatic electrodes or direct oxidation 
of electroactive molecules25–27,34–40. Thus, most clinically relevant 
nutrients and metabolites in sweat are rarely explored and unde-
tectable by existing wearable sensing technologies. Moreover, cur-
rent wearable biosensors usually require vigorous exercise to access 
sweat; although a few recent reports use pilocarpine gel-based ion-
tophoresis for sedentary sweat sampling22,30,36, this approach suffers 
from short sweat periods and low sensing accuracy due to the mix-
ing of sweat and gel fluid and the lack of dynamic sweat sampling.

In this Article, we present a universal wearable biosensing 
strategy based on a judicious combination of the mass-producible 
laser-engraved graphene (LEG), electrochemically synthesized 
redox-active nanoreporters (RARs) and molecularly imprinted 
polymer (MIP)-based ‘artificial antibodies’, as well as unique 
in situ regeneration and calibration technologies (Fig. 1b). Unlike 
bio-affinity sensors based on antibodies or classic MIPs, which 
are generally for one-time use and require multiple washing steps 

A wearable electrochemical biosensor for the 
monitoring of metabolites and nutrients
Minqiang Wang1,7, Yiran Yang1,7, Jihong Min1,7, Yu Song1, Jiaobing Tu1, Daniel Mukasa2, Cui Ye1, 
Changhao Xu1, Nicole Heflin3, Jeannine S. McCune4, Tzung K. Hsiai5, Zhaoping Li6 and Wei Gao   1 ✉

Wearable non-invasive biosensors for the continuous monitoring of metabolites in sweat can detect a few analytes at sufficiently 
high concentrations, typically during vigorous exercise so as to generate sufficient quantity of the biofluid. Here we report the 
design and performance of a wearable electrochemical biosensor for the continuous analysis, in sweat during physical exercise 
and at rest, of trace levels of multiple metabolites and nutrients, including all essential amino acids and vitamins. The biosensor 
consists of graphene electrodes that can be repeatedly regenerated in situ, functionalized with metabolite-specific antibody-like 
molecularly imprinted polymers and redox-active reporter nanoparticles, and integrated with modules for iontophoresis-based 
sweat induction, microfluidic sweat sampling, signal processing and calibration, and wireless communication. In volunteers, 
the biosensor enabled the real-time monitoring of the intake of amino acids and their levels during physical exercise, as well 
as the assessment of the risk of metabolic syndrome (by correlating amino acid levels in serum and sweat). The monitoring of 
metabolites for the early identification of abnormal health conditions could facilitate applications in precision nutrition.

Nature Biomedical Engineering | VOL 6 | November 2022 | 1225–1235 | www.nature.com/natbiomedeng 1225

mailto:weigao@caltech.edu
http://orcid.org/0000-0002-8503-4562
http://crossmark.crossref.org/dialog/?doi=10.1038/s41551-022-00916-z&domain=pdf
http://www.nature.com/natbiomedeng


Articles NaTure BIomedIcal EngIneerIng

to transduce the bio-affinity interactions in standard ionic solu-
tions41,42, this approach enables the demonstration of sensitive, 
selective and continuous monitoring of a wide range of trace-level 

biomarkers in biofluids including all nine essential AAs as well 
as vitamins, metabolites and lipids commonly found in human 
sweat (Supplementary Table 1). Seamless integration of this unique 
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Fig. 1 | Schematics and images of the wearable biosensor ‘NutriTrek’. a, Circulating nutrients such as AAs are associated with various physiological 
and metabolic conditions. b, Schematic of the wearable ‘NutriTrek’ that enables metabolic monitoring through a synergistic fusion of LEG, RARs and 
artificial antibodies. c,d, Schematic (c) and layer assembly (d) of the microfluidic ‘NutriTrek’ patch for sweat induction, sampling and biosensing. T, 
temperature. e,f, Images of a flexible sensor patch (e) and a skin-interfaced wearable system (f). Scale bars, 5 mm (e) and 2 cm (f). g, Block diagram 
of electronic system of ‘NutriTrek’. The modules outlined in red dashes are included in the smartwatch version. CPU, central processing unit; POT, 
potentiometry; In-Amp, instrumentation amplifier; MCU, microcontroller; TIA, trans-impedance amplifier; IP, iontophoresis; CE, counter-electrode; RE, 
reference electrode; WE, working electrode. h, Custom mobile application for real-time metabolic and nutritional tracking. i, ‘NutriTrek’ smartwatch with a 
disposable sensor patch and an electrophoretic display. Scale bars, 1 cm (top) and 5 cm (bottom).
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approach with in situ signal processing and wireless communication 
leads to a powerful wearable sweat sensing technology ‘NutriTrek’ 
that is able to perform personalized and non-invasive metabolic and 
nutritional monitoring towards timely intervention (Fig. 1b). The 
incorporation of the carbachol iontophoresis-based sweat induc-
tion and efficient microfluidic-based surrounding sweat sampling 
enables prolonged autonomous and continuous molecular analysis 
with high temporal resolution and accuracy across activities, dur-
ing physical exercise and at rest. Using five essential or condition-
ally essential AAs (that is, Trp, Try and three BCAAs (Leu, Ile and 
Val)) as exemplar nutrients, we corroborated the system in several 
human trials by enroling both healthy subjects and patients towards 
personalized monitoring of central fatigue, standard dietary intakes, 
nutrition status, metabolic syndrome risks and COVID-19 severity.

Results
Design and overview of the autonomous wearable biosensor 
technology. The flexible and disposable sensor patch consists of 
two carbachol-loaded iontophoresis electrodes, a multi-inlet micro-
fluidic module, a multiplexed MIP nutrient sensor array, a tempera-
ture sensor and an electrolyte sensor (Fig. 1c–f and Supplementary 
Fig. 1). All flexible electrode and sensor designs are based on the 
LEG, which has large surface area, has excellent electrochemi-
cal properties and can be produced at a large scale directly on a 
polyimide (PI) substrate via CO2 laser engraving (Supplementary  
Fig. 2). The sensor patch can be easily attached to skin with confor-
mal contact and interfaces with a miniaturized electronic module 
for on-demand iontophoresis control, in situ signal processing and 
wireless communication with the user interfaces through Bluetooth 
(Fig. 1g and Supplementary Figs. 3 and 4). A custom mobile app 
‘NutriTrek’ was developed to process, display and store the dynamic 
metabolic information monitored by the wearable sensors (Fig. 1h 
and Supplementary Video 1). The wearable system was also inte-
grated into a smartwatch with an electronic paper display (Fig. 1i 
and Supplementary Fig. 5).

Biosensor design and evaluation for universal metabolic and 
nutritional analysis. Universal detection of AAs and other metab-
olites/nutrients with high sensitivity and selectivity was achieved 
through careful design of the selective binding MIP layer on the 
LEG. MIPs are chemically synthesized receptors formed by polym-
erizing functional monomer(s) with template molecules. Although 
MIP technology has been proposed for sensing, separation and 
diagnosis42,43, it has not yet been demonstrated for continuous 
wearable sensing as classic MIP sensors require washing steps 
for sensor regeneration and the detection is generally performed 
in standard buffer or redox solutions. In our case, the functional 
monomer (for example, pyrrole) and crosslinker (for example, 
APBA) initially form a complex with the target molecule; follow-
ing polymerization, their functional groups are embedded in the 
polymeric structure on the LEG; subsequent extraction of the tar-
get molecules reveals binding sites on the LEG-MIP electrode that 
are complementary in size, shape, and charge to the target analyte 
(Supplementary Fig. 6). Two detection strategies—direct and indi-
rect—are designed on the basis of the electrochemical properties of 
the target molecules (Fig. 2). Optimizations and characterizations 
of the LEG–MIP sensors are detailed in Supplementary Note 1 and 
Supplementary Figs. 7–13.

For electroactive molecules in sweat, the oxidation of bound tar-
get molecules in the MIP template can be directly measured by dif-
ferential pulse voltammetry (DPV) in which the peak current height 
correlates with analyte concentration (Fig. 2a). Considering that 
multiple electroactive molecules can be oxidized at similar poten-
tials, this LEG–MIP approach addresses both sensitivity and selec-
tivity issues. For example, Tyr and Trp, two AAs with close redox 
potentials (~0.7 V), could be detected selectively with this strategy 

(Fig. 2b,c and Supplementary Fig. 14). Linear relationships between 
peak height current densities and target concentrations with sensi-
tivities of 0.63 µA µM−1 cm−2 and 0.71 µA µM−1 cm−2 respectively for 
the LEG–MIP Tyr and Trp sensors were observed (Supplementary 
Fig. 15). It is worth noting that choices of monomer/crosslinker/
template ratios and incubation periods have substantial influences 
on sensor response while sample volume does not (Supplementary 
Fig. 10). The Tyr and Trp sensors can be readily and repeatably 
regenerated in situ without any washing step with a high-voltage 
amperometry current–time (IT) that oxidizes the bound targets at 
their redox potentials (Fig. 2d).

As the majority of metabolites and nutrients (for example, 
BCAAs) are non-electroactive and cannot easily be oxidized 
under operational conditions, we herein utilize an indirect detec-
tion approach involving an RAR layer sandwiched between the 
LEG and MIP layers to enable rapid quantitation (Fig. 2e). The 
selective adsorption of the target molecules onto the imprinted 
polymeric layer decreases the exposure of the RAR to the sample 
matrix. Controlled-potential voltammetric techniques such as DPV 
or linear sweeping voltammetry (LSV) can be applied to measure 
the RAR’s oxidation or reduction peak, where the decrease in peak 
height current density corresponds to an increase in analyte levels. 
For example, using Prussian Blue nanoparticles (PBNPs) as the 
RAR (Supplementary Fig. 11), we developed an MIP–LEG Leu sen-
sor with a log-linear relationship between the peak height decrease 
and Leu concentration and a sensitivity of 702 nA mm−2 per decade 
of concentration (Fig. 2f). We established this approach to quan-
tify the physiologically relevant range of all nine essential AAs (that 
is, Leu, Ile, Val, Trp, Phe, histidine (His), lysine (Lys), methionine 
(Met) and threonine (Thr)) (Fig. 2g and Supplementary Fig. 16) as 
well as a number of vitamins, metabolites and lipids (vitamins B6, 
C, D3 and E, glucose, uric acid, creatine, creatinine and cholesterol) 
(Fig. 2h and Supplementary Fig. 17). In addition to these nutrients 
and metabolites, this approach can be easily reconfigured to enable 
the monitoring of a broad spectrum of biomarkers ranging from 
hormones (for example, cortisol) to drugs (for example, immuno-
suppressive drug mycophenolic acid) (Supplementary Fig. 18 and 
Supplementary Tables 2 and 3). Most of these targets are undetect-
able continuously by any existing wearable technology. Considering 
that a total level of multiple nutrients (for example, total BCAAs) is 
often an important health indicator, a multi-template MIP approach 
can be used to enable accurate and sensitive detection of the total 
concentration of multiple targets with a single sensor (Fig. 2i,j). 
These indirect LEG–RAR–MIP sensors can be regenerated in situ 
by applying constant potential to the working electrode, which 
repels the bound target molecules from the MIP layer, achieving 
prolonged re-usability (Fig. 2k).

The LEG–MIP sensors show stable responses during repeatable 
use: the PBNP-based RAR showed stable redox signals through-
out 60 repetitive cyclic voltammetry (CV) scans (Fig. 2l and 
Supplementary Fig. 11); minimal output changes were observed 
throughout a 42-day storage period (Supplementary Fig. 19a,b); 
the sensors also showed no substantial relative signal shift when 
used continuously over 5 days (Supplementary Fig. 19c). Compared 
with traditional MIP preparation processes, the electrodeposited 
MIP layer on the mass-producible LEG leads to high reproduc-
ibility in selectivity, sensitivity and device-to-device consistency 
(Supplementary Figs. 20 and 21). The choice of LEG as the MIP 
deposition substrate also showed advantages in sensor sensitivity 
compared with classic electrodes such as glassy carbon electrode, 
printed carbon electrode and Au electrode (Supplementary Fig. 22).  
Other RARs such as anthraquinone-2-carboxylic acid (AQCA) can 
also be used for indirect AA sensing with stable performance (nega-
tively scanned DPV was used here to monitor AQCA reduction) 
(Fig. 2m and Supplementary Fig. 23). As illustrated in Fig. 2n, the 
LEG–AQCA–MIP sensors could be directly regenerated in a raw 
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human sweat sample, resolving a main bottleneck of wearable bio-
sensing. The MIP–LEG AA sensors have excellent selectivity for 
other analytes in sweat (including AAs with similar structures) at 
physiologically relevant concentrations (Fig. 2o, Supplementary 
Fig. 24 and Supplementary Table 3). The LEG–MIP technology 
showed a comparable sensitivity with the current gold-standard 
laboratory-based GC–MS44 (Supplementary Fig. 25); the sensor 

measurements in raw human sweat samples have been validated 
against GC–MS (Fig. 2p and Supplementary Figs. 26 and 27).

Wearable system design for autonomous sweat induction, sam-
pling, analysis and calibration. To enable on-body continuous 
metabolic and nutritional monitoring, the flexible sensor patch 
was designed to comprise an iontophoresis module for localized 

1.2

2.4

3.6

0

Phe
Thr
His

Lys
Val
Leu
Ile
Met
Trp

log10((amino acid) (µM))

1.2

2.4

3.6

0

Creatine
Creatinine
Cholesterol

VC
VB6

VD3

VE
Uric acid
Glucose

log10((analyte) (µM))

CH3

HO

O

CH3NH2

0 50 100 150
0

50

Sweat Tyr
Sweat Trp
Sweat Leu

Conc. by GC-MS (µM)

0.1 0.2 0.30
–8

–6

–4

–2

0

C
ur

re
nt

 d
en

si
ty

 (
µA

 m
m

–2
)

Potential (V)

–10

–5

0

Potential (V)

0.4
0.6
0.8
1.0

P
ot

en
tia

l (
V

)

Time

–0.2

0.2
0.4

0

P
ot

en
tia

l (
V

)

Time

4

5

6

7

8

Potential (V)

4

6

8

10

Potential (V)

+Target

V

I

BCAAs

–0.8 –0.6 –0.4 –0.2 0
–12

–8

–4

0

C
ur

re
nt

 d
en

si
ty

 (
µA

 m
m

–2
)

Potential (V)

0 4 8 12

0.2

0.4

0

Number of regeneration

Raw sweat Leu sensor

0 4 8 12

0.4

0.8

1.2

0

Number of regeneration

LSV

IT IT

LSV

1.5 2.51 2 1.5 2.51 20.1 0.2 0.30

0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0 6 12 18

0.2
0.4
0.6
0.8

0

Number of regeneration

a

e

i

m

Block

+Target

V

I
LSV

T

V

Indirect detection

HO
NNH2

O

Oxidized

DPV

T

V

Direct detection

b

f

j

n

Tyr

Leu

–0.1 0.1 0.3 0.5
–24

–12

0

12

24
Initial 
30 cycles
60 cycles

C
ur

re
nt

 d
en

si
ty

 (
µA

 m
m

–2
)

Potential (V)

Fe
4
(Fe(CN)

6
)
3

c

g

k

o

Trp

1

0.5

0
STrpSTyrSBCAAs

SLeu
SIle

SVal

d

h

l

p

DPV
IT IT

DPV

O

HN

H
N

O

NH

N

n

B

O
HN

NH

n

HO

LEG

NH

N

n

B

O
HN

N

n

O

R2

O O

HN

R1

OO

NH

CH3

CH3

CH3

CH3CH3

CH3

R =

Multi-template

LEG
RAR

Leu

NH

N

n

B

O
HN

NH

n

HO

CH3

O O

CH3

HN

LEG
RAR

1 2 3

0.9

1.8

0Δ
J 

(µ
A

 m
m

–2
)

log
10

((Leu) (µM))

100

150

1.5 2.5 3.5

1.6

3.2

0

log
10

((BCAAs) (µM))

Δ
J 

(µ
A

 m
m

–2
)

Δ
J 

(µ
A

 m
m

–2
)

C
on

ce
nt

ra
tio

n 
by

 s
en

so
r 

(µ
M

)

Δ
J 

(µ
A

 m
m

–2
)

Δ
J 

(µ
A

 m
m

–2
)

C
ur

re
nt

 d
en

si
ty

 (
µA

 m
m

–2
)

C
ur

re
nt

 d
en

si
ty

 (
µA

 m
m

–2
)

C
ur

re
nt

 d
en

si
ty

 (
µA

 m
m

–2
)

Δ
J 

(µ
A

 m
m

–2
)

Δ
J 

(µ
A

 m
m

–2
)

Δ
J 

(µ
A

 m
m

–2
)

Δ
J 

(µ
A

 m
m

–2
)

1

2

3

0

(Tyr) (µM)

2

4

0

(Trp) (µM)

0
20

0
40

0 0
20

0
40

0

1 2 3

1

2

0

log
10

((Leu) (µM))

Δ
J 

(µ
A

 m
m

–2
)

Δ
J 

(µ
A

 m
m

–2
)

BCAAs
Tyr

Trp
Leu

IIe
Val
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on-demand sweat induction, a multi-inlet microfluidic module for 
efficient sweat sampling, a multiplex LEG–MIP sweat nutrient sen-
sor array for continuous AA analysis, and LEG-based temperature 
and electrolyte sensors for real-time AA sensor calibration (Fig. 3a). 
Unlike classic bio-affinity sensor’s detection in buffer or redox solu-
tions, in situ sweat analysis poses more challenges due to complex 
and interpersonally varied sweat composition and demands tech-
nological innovations for accurate on-body sensing. For example, 
for direct LEG–MIP Trp sensing, a DPV scan in sweat even before 
target/MIP recognition could lead to an oxidation peak as a small 
amount of electroactive molecules (for example, Trp and Tyr) can 
be oxidized on the surface of MIP layer; after recognition and 
binding of Trp into the MIP cavities, a substantially higher current 
peak height can be obtained; measuring difference of the two peak 
heights allows more accurate measurement of bound Trp directly in 
sweat with high selectivity (Fig. 3b–d). The influence of temperature  

and ionic strength on the AA sensors can be calibrated in real time 
on the basis of the readings from an LEG-based strain-resistive 
temperature sensor and an ion-selective Na+ sensor (Fig. 3e and 
Supplementary Fig. 28). Considering that sweat rate during exer-
cise was reported to influence certain biomarker levels, we could 
use sweat Na+ level (which showed a linear correlation with sweat 
rate) to further calibrate the nutrient levels for personalized analy-
sis. This unique transduction strategy involving both the two-step 
DPV scans and the temperature/electrolyte calibrations allows us to 
obtain accurate reading continuously in sweat during on-body use 
(Supplementary Fig. 29).

To make this wearable technology broadly applicable, particu-
larly for sedentary individuals, we utilize here a custom-designed 
iontophoresis module consisting of the LEG anode and cathode 
coupled with hydrogels containing muscarinic agent carbachol 
(carbagel) for sustainable sweat extraction. Carbachol was selected 
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from various muscarinic agents as it allows the most efficient, 
repeatable and long-lasting sweat secretion from the surrounding 
sweat gland owing to its additional nicotinic effects45 (Fig. 3f–h, 
Supplementary Fig. 30 and Supplementary Note 2). In contrast, the 
classic sweat-inducing agent—pilocarpine—used by the standard 
sweat test and previously reported wearable systems22,30,36 offers 
only a short period of sweat and very limited sweat rate from the 
neighbouring sweat glands (Fig. 3f–h). Furthermore, sampling the 
mixture of the leaked sweat underneath the pilocarpine gel and 
the gel fluid could result in substantial wearable sensor errors and 
fail to provide real-time information owing to the absence of effi-
cient sweat refreshing. A very small current (50–100 µA) is used 
for our iontophoresis module, compared with commonly used 
1–1.5 mA (refs. 22,30,36), greatly reducing the risk of skin irritation. 
To maximize the efficiency of low-volume sweat sampling and 
improve the temporal resolution of wearable sensing, a compact 
and flexible microfluidic module was carefully designed to isolate 
sweat sampling areas from iontophoresis gels. Numerical simu-
lations were performed to optimize the geometric design of the 
microfluidic module, including inlet number, angle span, orien-
tation and flow direction with respect to the reservoir geometry 
(Fig. 3i, Supplementary Note 3, Supplementary Figs. 31 and 32, 
Supplementary Video 2 and Supplementary Table 4). With the opti-
mized design for sweat induction and sampling, sweat can be con-
veniently induced locally and readily sampled with the multi-inlet 
microfluidics over a prolonged period (Fig. 3g,j, Supplementary 
Fig. 33 and Supplementary Video 3). At the physiological sweat 
rates ranging from 0.15 µl min−1 to 3 µl min−1, our wearable sensor 

patch could provide reliable and accurate analysis of the dynamic 
changes of the AA levels (Supplementary Figs. 34 and 35).

Evaluation of the wearable system for dynamic physiological 
and nutritional monitoring. Evaluation of the wearable system 
was conducted first via sensing of sweat Trp and Tyr in human sub-
jects during a constant-load cycling exercise trial (Fig. 4a–d and 
Supplementary Fig. 36). The DPV data from the sensors were wire-
lessly transmitted along with temperature and Na+ sensor readings 
to the mobile app that automatically extracted the oxidation peaks 
using a custom-developed iterative baseline correction algorithm 
(Fig. 4e and Supplementary Fig. 37) and performed calibration 
for the accurate quantification of sweat Tyr and Trp. Considering 
that AAs (for example, Try and BCAAs) play a crucial role in cen-
tral fatigue during physical exercise46, a flexible Trp and BCAA 
sensor array was used to monitor the AA dynamics during vigor-
ous exercise (Fig. 4f–j and Supplementary Fig. 38). Both Trp and 
BCAA levels decreased during the exercise owing to the serotonin 
synthesis and BCAA ingestion, respectively. The increased sweat 
Trp-to-BCAA ratio was observed, which could potentially serve as 
an indicator of central fatigue, in agreement with a previous report 
on its plasma counterpart46.

The wearable iontophoresis-integrated patch enables daily 
continuous AA monitoring at rest beyond the physical exercise.  
As illustrated in Fig. 4k–o and Supplementary Figs. 39–42, rising 
Trp and Tyr levels in sweat were observed from all four subjects 
after Trp and Tyr supplement intake while the readings from the 
sensors remained stable during the studies without intake. Such 
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capability opens the door for personalized nutritional monitor-
ing and management through personalized sensor-guided dietary 
intervention. It should be noted that our pilot study showed that 
sweat nutrient and electrolyte levels were independent of sweat rate 
changes during the carbachol-based iontophoresis-induced sweat 
(Supplementary Fig. 43).

Personalized monitoring of metabolic syndrome risk factors 
using wireless biosensors. Metabolic syndrome, characterized by 
abdominal obesity and insulin resistance, is now on the rise as the 
leading cause of morbidity and mortality, affecting more than a third 
of all adults in the United States47. Elevated circulating BCAAs levels 
are predictive of insulin-resistant obesity and metabolic syndrome, 
and are linked to CVDs and T2DM (Fig. 5a and Supplementary 

Note 4)3,4, which could lead to potential complications of severe 
COVID-19 (ref. 12). Recent studies have shown the potential use 
of BCAA supplementation as a dietary intervention to ameliorate 
insulin resistance48. Monitoring changes in essential nutrient levels 
provides highly sensitive early detection of metabolic syndrome 
risks, enabling effective personalized dietary intervention (Fig. 5b). 
To explore the use of sweat BCAAs as a non-invasive risk factor 
of metabolic syndrome, we performed a pilot study to investigate 
the correlations between serum and sweat BCAAs involving three 
groups of subjects: normal weight (I, n = 10), overweight/obesity 
(II, n = 7) and obesity with T2DM (III, n = 3) (Fig. 5c,d). Positive 
Pearson correlation coefficients of 0.66 (n = 65) and 0.69 (n = 65) 
were observed between sweat and serum levels (all analysed by the 
sensors) of Leu and total BCAA, respectively (Fig. 5c). Compared 
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with healthy participants in group I, substantially elevated sweat and 
serum Leu levels (analysed by the sensors) were observed in groups 
II and III (Fig. 5d), consistent with previous reports that higher cir-
culating BCAA levels were identified in individuals with obesity and 
T2DM3. Considering the well-established role of BCAAs on insulin 
production and inhibition of glycogenolysis, we also investigated 
the post-prandial response of sweat Leu/BCAAs and blood glu-
cose/insulin after BCAA supplement and dietary intake in healthy 
subjects (Fig. 5e,f). All biomarkers remained stable during the fast-
ing period; protein diet intake resulted in increases in both blood 
glucose and insulin, while BCAA intake only led to a rapid insu-
lin increase. In both studies, sweat Leu and BCAAs first increased 
in the 30–60 min and then decreased. For subjects with different 
metabolic conditions, Leu levels in iontophoretic sweat after BCAA 
vary differently: although a substantial increase in sweat Leu levels 
was observed in all cases, healthy subjects showed a drastic percent-
age fluctuation and individuals with obesity/T2DM showed blunted 
fluctuation that may indicate the different metabolic stage of BCAA 
in those individuals (Fig. 5g).

Considering that circulating elevated Leu has been reported as 
a key metabolic fingerprint for COVID-19 severity, we also evalu-
ated our biosensors for analysing the samples from patients with 
COVID-19 and healthy individuals; substantially elevated Leu lev-
els were identified in COVID-19-positive samples compared with 
the negative ones (415.6 ± 133.7 versus 151.5 ± 36.0 µM), indicating 
the great potential of our biosensors for at-home COVID-19 moni-
toring and management (Fig. 5h).

Discussion
Circulating metabolic biomarkers, such as AAs and vitamins, have 
been associated with various health conditions, including diabetes 
and CVDs. Metabolic profiling using wearable sensors has become 
increasingly crucial in precision nutrition and precision medicine, 
especially in the era of the COVID-19 pandemic, as it provides not 
only insights into COVID-19 severity but also guidance to stay 
metabolically healthy to minimize the risk of potential COVID-19 
infection. As the pandemic remains rampant throughout the world 
and regular medical services are at risk of shortage, there is an 
urgent need to develop and apply wearable sensors that can moni-
tor health conditions via metabolic profiling to achieve at-home 
diagnosis and timely intervention via telemedicine. However, cur-
rent wearable electrochemical sensors are limited to a narrow range 
of detection targets owing to lack of continuous sensing strategies 
beyond ion-selective and enzymatic electrodes. Though various 
bio-affinity-based sensors have been developed to detect a broader 
spectrum of targets using antibodies or MIPs, they generally require 
multiple washing steps or provide only one-time use; these limita-
tions have hampered their useability in wearable devices. Moreover, 
the majority of wearable biosensors rely on vigorous exercise to 
access sweat and are not suitable for daily continuous use.

By integrating mass-producible LEG, electrochemically syn-
thesized RARs and ‘artificial antibodies’, we have demonstrated a 
powerful universal wearable biosensing strategy that can achieve 
selective detection of a broad range of biomarkers (including all 
essential AAs, vitamins, metabolites, lipids, hormones and drugs) 
and reliable in situ regeneration. Furthermore, to enable continu-
ous and on-demand metabolic and nutritional monitoring across 
the activities, we have integrated the LEG–MIP sensor array and 
iontophoresis-based sweat induction into a wireless wearable tech-
nology, with optimized multi-inlet microfluidic sudomotor axon 
reflex sweat sampling, in situ signal processing, calibration and 
wireless communication. Using this telemedicine technology, we 
have demonstrated the wearable and continuous monitoring of 
post-prandial AA responses to identify risks for metabolic syn-
drome. The high correlation between sweat and serum BCAAs 
suggests that this technology holds great promise for use in  

metabolic syndrome risk monitoring. The substantial difference in 
Leu between COVID-19-positive and COVID-19-negative blood 
samples indicates the potential of using this technology for at-home 
COVID-19 management. We envision that this wearable technol-
ogy could play a crucial role in the realization of precision nutri-
tion through continuous monitoring of circulating biomarkers and 
enabling personalized nutritional intervention. This technology 
could also be reconfigured to continuously monitor a variety of 
other biomarkers towards a wide range of personalized preventive, 
diagnostic and therapeutic applications.

Methods
Materials and reagents. Uric acid, l-tyrosine, silver nitrate, iron(III) chloride, 
dopamine hydrochloride, choline chloride, creatinine, pantothenic acid calcium 
salt, citrulline, pyridoxine and lactic acid were purchased from Alfa Aesar. 
Sodium thiosulfate pentahydrate, sodium bisulfite, tryptophan, leucine, alanine, 
isoleucine, methionine, valine, lysine, thiamine hydrochloride, serine, sulfuric 
acid, hydrochloric acid, AQCA, 3-aminophenylboronic acid (APBA), aniline, 
o-phenylenediamine, methylene blue, thionine, 2-(N-morpholino)ethanesulfonic 
acid hydrate (MES), ethanolamine, N-(3-dimethyl-aminopropyl)-N′-ethy
lcarbodiimide (EDC), N-hydroxysulfosuccinimide sodium salt (sulfo-NHS), 
bovine serum albumin (BSA), tris(hydroxymethyl)aminomethane hydrochloride 
(Tris–HCl), streptavidin–peroxidase conjugate (Roche) and hydroquinone were 
purchased from Sigma-Aldrich. Carboxylic-acid-modified magnetic beads (MBs; 
Dynabeads, M-270) were obtained from Invitrogen. Potassium ferricyanide 
and potassium ferrocyanide were purchased from Acros Organics. Acetic acid, 
methanol, sodium acetate, sodium chloride, sodium dihydrogen phosphate, 
potassium chloride, potassium hydrogen phosphate, urea, l-ascorbic acid and 
dextrose (d-glucose) anhydrous, glycine, arginine, inositol, ornithine, aspartic acid, 
threonine, histidine, riboflavin, creatine, phenylalanine, nicotinic acid, folic acid, 
glutamic acid and hydrogen peroxide (30% (w/v)) were purchased from Thermo 
Fisher Scientific. Insulin capture antibody and biotinylated detector antibody were 
purchased from R&D systems (Human/Canine/Porcine Insulin DuoSet ELISA). 
Screen printed carbon electrodes and magnetic holder were purchased from 
Metrohm DropSens. Medical adhesives were purchased from 3 M and Adhesives 
Research. PI films (75 μm thick) were purchased from DuPont. PET films (12 μm 
thick) were purchased from McMaster-Carr.

Fabrication and preparation of the LEG sensors. The LEG electrodes were 
fabricated on a PI film with a thickness of 75 μm (DuPont) with a 50 W CO2 laser 
cutter (Universal Laser System). When engraving the PI with a CO2 laser cutter, 
the absorbed laser energy is converted to local heat and thus leads to a high 
localized temperature (>2,500 °C), chemical bonds in the PI network are broken 
and thermal re-organization of the carbon atoms occurs, resulting in sheets of 
graphene structures. The optimized parameters for the graphene electrodes and 
electronic connections were power 8%, speed 15%, and points per inch (PPI) 
1,000 in raster mode with three-time scan. For the active sensing area of the 
temperature sensor, the optimized parameters were power 3%, speed 18%, and 
PPI 1,000 in vector mode with one-time scan. To prepare the reference electrode, 
Ag was first modified on the corresponding graphene electrode by multi-current 
electrodeposition with electrochemical workstation (CHI 832D) at −0.01 mA 
for 150 s, −0.02 mA for 50 s, −0.05 mA for 50 s, −0.08 mA for 50 s and −0.1 mA 
for 350 s using a plating solution containing 0.25 M silver nitrate, 0.75 M sodium 
thiosulfate and 0.5 M sodium bisulfite. To obtain the Ag/AgCl electrode, 0.1 M 
FeCl3 solution was further dropped on the Ag surface for 30 s, and then 3 µl 
polyvinyl butyral (PVB) reference cocktail prepared by dissolving 79.1 mg of PVB 
and 50 mg of NaCl in 1 ml of methanol was dropped on the Ag/AgCl electrode 
and dried overnight. The Na+-selective electrode was prepared as follows: 0.6 µl of 
Na+-selective membrane cocktail prepared by dissolving 1 mg of Na ionophore X, 
0.55 mg sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, 33 mg polyvinyl 
chloride and 65.45 mg bis(2-ethylhexyl) sebacate into 660 µl of tetrahydrofuran was 
drop-casted onto the graphene electrode and dried overnight. To obtain the desired 
stable Na+-sensing performance for long-term continuous measurements, the 
obtained Na+ sensor was conditioned overnight in 100 mM NaCl.

The fabrication process of the LEG–MIP sensor array is illustrated 
in Supplementary Fig. 6. All the MIP layers are synthesized by 
electro-polymerization. The polymerization solution was prepared by dissolving 
5 mM template (for example, target AA), 12.5 mM APBA and 37.5 mM pyrrole 
into 0.01 M phosphate-buffered saline (PBS) (pH 6.5). For multi-MIP BCAA 
sensor, 5 mM of each target (that is, Leu, Ile and Val) was used. Before MIP 
deposition, the LEG was activated in 0.5 M H2SO4 with CV scans for 60 segments 
(−1.2 to 1 V with a scan rate of 500 mV s−1). For the direct-detection LEG–MIP 
sensors, the target imprinted polymer was electrochemically synthesized on the 
LEG electrode with CV deposition (0–1 V for ten cycles, 50 mV s−1) using the 
prepared polymerization solution. The target molecules were extracted by soaking 
the electrode into an acetic acid/methanol mixture (7:3 v/v) for 1 h. Subsequently, 
the resulting electrode was immersed into 0.01 M PBS (pH 6.5) for repetitive  
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CV scans (0.4–1 V with a scan rate of 50 mV s−1) until a stable response was 
obtained. For LEG-non-imprinted polymer, the electrode was prepared following 
the same procedure as LEG–MIP except that no template was added in the 
polymerization solution.

For the indirect-detection MIP sensors, electrochemically synthesized RARs 
(for example, PBNPs or AQCA) were first modified on the LEG electrode. The 
PBNP RAR on the LEG was prepared with CV (20 cycles) (−0.2 to 0.6 V with 
a scan rate of 50 mV s−1) in an aqueous solution containing 3 mM FeCl3, 3 mM 
K3Fe(CN)6, 0.1 M HCl and 0.1 M KCl. A PBNP layer with appropriate redox signal 
is necessary to produce a good sensitivity for the final MIP sensors; to achieve 
this stable and suitable redox signal, the LEG electrode was rinsed with distilled 
water after the initial Prussian blue (PB) deposition, and the PB electrodeposition 
step was repeated two more times until a stable 70 µA LSV peak in 0.1 M KCl 
solution was achieved. Subsequently, the LEG–PB was rinsed with distilled water 
and immersed in a solution containing 0.1 M HCl and 0.1 M KCl for repetitive 
CV scans (−0.2 to 0.6 V with a scan rate of 50 mV s−1) until a stable response was 
obtained. To prepare the AQCA RAR on the LEG, the LEG electrode was first 
incubated in 50 µl PBS (pH 6.5) with 5 mM AQCA at 4 °C overnight. Subsequently, 
the LEG–AQCA was rinsed with distilled water and immersed into a phosphate 
buffer solution for repetitive CV scans (−0.8 to 0 V with a scan rate of 50 mV s−1) 
until a stable response was obtained. For the indirect-detection LEG–PB–MIP 
sensors, an additional PB activation process was conducted right after the template 
extraction (IT scan at 1 V in 0.5 M HCl for 600 s), followed by an LEG–PB–MIP 
sensor stabilization process in 0.1 M KCl (CV scans at −0.2 to 0.6 V with a scan rate 
of 50 mV s−1). It should be noted that, for the LEG–AQCA–MIP sensor, only three 
CV cycles of polymerization were used to prepare the MIP layer, and the sensor 
was stabilized in 0.01 M PBS (pH 6.5) (CV scans at −0.8 to 0 V with a scan rate  
of 50 mV s−1).

The morphology of materials was characterized by scanning electron 
microscopy (Nova Nano SEM 450) and transmission electron microscopy 
(Talos S-FEG FEI, USA). The Raman spectrum of the electrodes with different 
modification was recorded using a 532.8 nm laser with an inVia Reflex (Renishaw). 
Fourier-transform infrared spectra were measured using infrared spectrometry 
(Nicolet 6700).

Characterization of the LEG sensor performance. A set of electrochemical 
sensors were characterized in solutions of target analytes. All the in vitro sensor 
characterizations were performed through CHI 832D. The response of the 
Na+ sensor was characterized with open circuit potential measurements in the 
solutions containing varied Na+ levels. DPV analysis was performed for all the 
direct-detection LEG–MIP sensor characterizations in 0.01 M PBS (pH 6.5) or 
in raw sweat. The DPV conditions were as follows: range, 0.4–1 V; incremental 
potential, 0.01 V; pulse amplitude, 0.05 V; pulse width, 0.05 s; pulse period, 
0.5 s; and sensitivity, 1 × 10−5 A V−1. For in vitro indirect detection of the target 
molecules based on the LEG–PB–MIP sensors, LSV analysis (0.4–0 V) was 
performed in 0.1 M KCl. The LSV conditions were as follows: range, 0.4–0 V; 
scan rate, 0.005 V s−1; sample interval, 0.001 V; quiet time, 2 s; and sensitivity, 
1 × 10−4 A V−1. For in vitro indirect detection of the target molecules based on the 
LEG–AQCA–MIP sensors, negative DPV analysis (0 to −0.8 V) was performed in 
0.01 M PBS. The negative DPV conditions were as follows: 0 to −0.8 V; incremental 
potential, 0.01 V; pulse amplitude, 0.05 V; pulse width, 0.05 s; pulse period, 0.5 s; 
and sensitivity, 1 × 10−5 A V−1. For in situ sweat analyte measurement, background 
and signal curves were recorded before and after incubation; the signal current 
was obtained as the difference of the peak amplitudes between the post-incubation 
signal and the background current curves (Fig. 3b–d and Supplementary Fig. 29). 
The temperature sensor characterization was carried out on a ceramic hot plate 
(Thermo Fisher Scientific) (Supplementary Fig. 28). The sensor response was 
recorded using a parameter analyser (Keithley 4200A-SCS) and compared with the 
readings from an infra-red thermometer (LASERGRIP 800; Etekcity).

To evaluate the performance of the various electrode substrates for MIP-based 
AA sensing, LEG, printed carbon electrode, Au electrode and glassy carbon 
electrode were chosen. The glassy carbon electrodes were purchased from CH 
Instruments. The printed carbon electrodes were printed on the PI substrate 
using a Dimatix Materials Printer DMP-2850 (Fujifilm, Minato, Japan) with a 
commercial carbon ink from NovaCentrix. The Au electrodes were fabricated 
via E-beam evaporation: 20 nm of Cr and 100 nm of Au were deposited onto an 
O2-plasma pre-treated PET substrate. MIP films were prepared with CV deposition 
(0–1 V for ten cycles, 50 mV s−1).

Fabrication and characterization of microfluidic channels. The microfluidic 
module was fabricated using a 50 W CO2 laser cutter (Universal Laser System) 
(Supplementary Fig. 1). Briefly, layers of double-sided and single-sided medical 
adhesives (3M) were patterned with channels, inlets, the iontophoresis gel 
outlines and reservoirs. For all microfluidic layers, the iontophoresis gel outlines 
were patterned to enable the current flow from the top PI electrode layer. The 
bottom layer, which is the double-sided adhesive layer in contact with the skin 
(accumulation layer), was patterned with a sweat accumulation well (3M 468MP, 
laser parameters: power 60%, speed 90%, PPI 1,000). The second layer (the inlet 
layer), in contact with the accumulation layer, was patterned with the multiple 

inlets (12-μm-thick PET, laser parameters: power 20%, speed 100%, PPI 1,000). 
The third layer (channel layer), in contact with the inlets layer, was patterned with 
microfluidic channels (Adhesives Research 93049, laser parameters: power 45%, 
speed 100%, PPI 1,000). The fourth layer (reservoir layer), sandwiched between 
the channel layer and the electrode PI layer, was patterned with the reservoir and 
the outlet (3M 468MP, laser parameters: power 60%, speed 90%, PPI 1,000). The 
reservoir is an ellipse with a 5.442 mm major axis and a 4.253 mm minor axis to 
fully enclose the active sensing area. The thickness of the channel layer is ~0.1 mm 
(Adhesives Research 93049), and the thickness of the reservoir layer is 0.13 mm 
(3M 468MP). The reservoir area is 18.17 mm2, and thus the reservoir volume 
can be calculated as the area multiplied by the thickness of the reservoir layer 
(0.13 mm), which totals 2.36 µl.

Fabrication of agonist agent hydrogels. Hydrogels containing muscarinic agent 
carbachol was prepared as follows. Briefly, for anode gel, agarose (3% w/w) was 
added into de-ionized water and then heated to 250 °C under constant stirring. 
After the mixture was fully boiled and became homogeneous without agarose 
grains, the mixture was cooled down to 165 °C and 1% carbachol was added to the 
above mixture. Subsequently, the cooled mixture was slowly poured into pre-made 
cylindrical moulds or into assembled microfluidic patch and solidified for 10 min 
at 4 °C. The cathode gel was prepared similarly except that NaCl (1% w/w) was 
used instead of carbachol.

Signal conditioning, processing and wireless transmission for the wearable 
sensor. The block diagram of the electronic system (Fig. 1g and Supplementary 
Fig. 4) represents both the wearable electronic patch and the smart watch that 
can (1) induce sweat via iontophoresis and (2) monitor sweat via electrochemical 
methods. The sweat induction and the sweat sensing procedures are initiated and 
controlled by the microcontroller (STM32L432KC, STMicroelectronics) when it 
receives a user command from the Bluetooth module over universal asynchronous 
receiver–transmitter (UART) communication.

Sweat induction. Programmable iontophoretic current is generated by a 
voltage-controlled current source that consists of a unity-gain difference amplifier 
(AD8276, Analog Devices) and a boost transistor (BC846, ON Semiconductor). 
The circuit is supplied by the output of a boost converter (LMR64010) that 
boosts the 3.7 V battery voltage to 36 V. The microcontroller controls the 
digital-to-analogue converter (DAC) (DAC8552, Texas Instruments) over a serial 
peripheral interface to set the control voltage of the current source. The current 
source output is checked by a comparator (TS391, STMicroelectronics), and the 
microcontroller is interrupted through its general-purpose input/output pin at 
output failure. The protection circuit consists of a current limiter (MMBF5457, ON 
Semiconductor) and analogue switches (MAX4715, Maxim Integrated; ADG5401, 
Analog Devices). The microcontroller’s general-purpose input/output is also used 
to enable or disable the iontophoresis circuit. For the optimized design, a 100-µA 
current (~2.6 µA mm−2) was applied for on-body iontophoresis sweat induction 
using the flexible microfluidic patch.

Power analysis. When powered at 3.3 V, the electronic system consumes ~28 mA 
during an active electrochemical measurement and ~61 mA during iontophoresis. 
The microcontroller and Bluetooth module each consume ~12 mA; the sensor 
interface consumes ~4 mA; the boost converter and iontophoresis module 
consumes ~33 mA; and the display module consumes an additional ~8 mA when 
refreshing its screen.

Sweat sensing. The sweat sensing circuitry can perform two-channel simultaneous 
DPV, as well as potentiometric and temperature measurements. A bipotentiostat 
circuit is constructed by a control amplifier (AD8605) and two transimpedance 
amplifiers (AD8606). A series voltage reference (ISL60002, Renesas Electronics) 
and a DAC (DAC8552, Texas Instruments) is used to generate a dynamic potential 
bias across the reference and working electrodes. An instrumentation amplifier 
(INA333, Texas Instruments) is used for potentiometric measurements, and a 
voltage divider is used for the resistive temperature sensor. All analogue voltage 
signals are acquired by the microcontroller’s built-in analogue-to-digital converter 
(ADC) channels, processed and then transmitted over Bluetooth to a user device.

Custom mobile application design. The custom mobile application was developed 
with the cross-platform Flutter framework. The mobile application can wirelessly 
communicate with the wearable devices via Bluetooth to send commands, and 
to acquire, process and visualize the sweat biomarker levels. The application 
establishes a secure Bluetooth connection to the wearable sensor. The home 
page plots the user’s historical biomarker levels, and highlights the most recently 
measured analyte concentrations. When a sweat biomarker measurement is 
prompted, the user can switch over to the measurement page that plots the sweat 
sensors’ voltammograms in real time. Following the voltammetric measurement, 
the app extracts the voltammograms’ peak currents using a custom baseline 
correction algorithm, then converts the peak currents to corresponding biomarker 
concentrations. These measurement data are added to the list of historic analyte 
levels on the home page.
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Refreshing time analysis and simulations. The refreshing time analyses were 
performed using numerical simulations (COMSOL). Three-dimensional models 
of different microfluidic designs with same dimensions of the actual device were 
created in Rhinoceros and imported into COMSOL Multiphysics. The mass 
transport process was simulated by numerically solving the Stokes equation for an 
incompressible flow coupled with convection–diffusion equation (Supplementary 
Note 3).

Human subject recruitment. The validation and evaluation of the sweat 
sensor were performed using human subjects in compliance with all the ethical 
regulations under protocols (ID 19-0892 and 21-1079) that were approved by the 
institutional review board at California Institute of Technology. The participating 
subjects (aged over 18 years) were recruited from the California Institute of 
Technology campus and the neighbouring communities through advertisement. 
All subjects gave written informed consent before study participation. For wearable 
sensor evaluation, healthy subjects with a body mass index (BMI) of 18.5–
24.9 kg m−2 with fasting serum glucose <100 mg dl−1 were recruited. For the BCAA 
study, inclusion criteria include: group I, individuals with normal weight who have 
a BMI of 18.5–24.9 kg m−2 with fasting serum glucose <100 mg dl−1 (healthy); group 
II, individuals with overweight/obesity who have a BMI of 25–35 kg m−2 and fasting 
serum glucose <6 mg dl−1 (overweight/obesity); group III, individuals with obesity 
who have a BMI of 25–35 kg m−2 and fasting serum glucose ≥126 mg dl−1 (obesity 
and T2DM). COVID-19-positive and COVID-19-negative serum samples were 
purchased from RayBiotech.

GC–MS analysis for sensor validation. GC–MS analysis of the AAs in sweat 
and serum samples was performed using EZ:Faast kit from Phenomenex, which 
enables sample preparation, derivatization and GC–MS analysis of free AAs. A 
Varian Saturn 2000 was used for the GC–MS runs. One microlitre of prepared 
sample solution was injected for GC in helium carrier gas at 1.0 ml min−1 constant 
flow with a pulse pressure of 20 pounds per square inch for 0.2 min, with the oven 
programmed from 110 °C to 320 °C at 32 °C min−1. The mass chromatography was 
set with source at 240 °C, quad at 180 °C and auxiliary at 310 °C with a scan range 
of 45–450 m/z at a sampling rate of 3.5 scans s−1. Selected ion monitoring was 
used, which records the ion current at selected masses that are characteristic of the 
certain AA in an expected retention time49. For example, after the derivatization 
of the EZ:Faast kit, Trp has a characteristic mass at 130 with a retention time at 
around 5.1 min, and peak height is recorded for Trp measurements at ion number 
130 and at 5.1 min from the raw data spectrum. The internal standard  
(IS; norvaline) was added during the sample derivatization process to account  
for potential evaporation-induced increase in peak detection; the IS norvaline peak 
height is recorded at its ion number 158 at 1.65 min (Supplementary  
Fig. 26). The Trp peak height recorded from raw data spectrum was calibrated with 
respect to the IS in the same run: normalized Trp peak height = Trp peak height/
IS peak height. With normalized peak heights of different levels of Trp standards, 
calibration plots were constructed. For other samples, the normalized peak height 
of Trp was used to calculate the concentration.

Integrated system validation in human subjects. System evaluation during 
exercise. To validate the wearable sensor system, we conducted constant-load 
cycling exercise on healthy subjects. The subjects reported to the lab after fasting 
overnight and were given a standardized protein drink (Fairlife, Core Power 
Elite). The subjects’ foreheads and necks were cleaned with alcohol swabs and 
gauze before the sensor patches were placed on the body. A stationary exercise 
bike (Kettler Axos Cycle M-LA) was used for cycling trials. The subjects cycled 
at 60 rpm for 60 min or until fatigue. During the on-body trial, the data from the 
sensor patches were wirelessly sent to the user interface via Bluetooth. When the 
subjects started biking, the sensor system continuously acquired and transmitted 
temperature and sodium sensor data. Every minute, the electronic system initiated 
a transient voltage bias between the reference and working electrodes. When the 
bias triggered a current above an experimentally determined threshold,  
the system would start a CV cleaning cycle and then the first DPV scan as 
the initial background without target incubation. The DPV scan was repeated 
7 min later as the post-incubation curve. Between the two scans, sodium 
and temperature sensor data were continuously recorded. Right after the 
post-incubation DPV, another cycle started with an IT cleaning/regeneration 
step, followed by an initial background DPV scan. The collected temperature, 
sodium and DPV data were wirelessly transmitted to a user device via Bluetooth 
in real time, where the molecular data were extracted, calibrated and converted to 
concentration levels. Sweat samples were collected periodically from the subjects 
during the studies using centrifuge tubes. The sweat samples were then frozen 
at −20 °C for further testing and validation via electrochemical test with the 
biosensors and GC–MS analysis.

System evaluation with Tyr/Trp supplement intake. The subjects reported to the 
lab after fasting overnight. The subjects’ arms were cleaned with alcohol swabs 
and gauze before the sensor patches were placed on the body. The subjects were 
provided Tyr and Trp supplement (1 g each) for the intake study. In contrast, the 
control study was performed on the subjects without any supplementary intake. 

Five-minute iontophoresis was applied on the subjects. The sensor data recording 
process was the same as in exercise-based human trials.

Sensor evaluation with BCAA diet challenge. For the BCAA studies, the subjects 
were asked to consume 5 g BCAAs (2:1:1 Leu:Ile:Val) or a standardized snack 
including a protein drink (Fairlife, Core Power Elite) and a CLIF energy bar. An 
iontophoresis session was implemented with carbachol gels for sweat induction. 
Over the entire study period, the subject’s sweat was sampled periodically and 
analysed by the sensor patch. Blood glucose level was recorded every 15 min with a 
commercial Care Touch Blood Glucose Meter. Fresh capillary blood samples were 
collected using a finger-prick approach during the human studies. After cleaning 
the fingertip with alcohol wipe and allowing it to air dry, the skin was punctured 
with a CareTouch lancing device. Samples were collected with centrifuge tubes 
after wiping off the first drop of blood with gauze. After the 90-min standardized 
clotting procedure finished, serum was separated by centrifuging at 6,000 rpm for 
15 min, and instantly stored at −20 °C for analysis with GC–MS, the LEG–MIP 
sensors and the custom insulin assay.

Blood insulin analysis. For the BCAA diet challenge study, the collected serum 
samples were analysed using a custom insulin sandwich immunoassay. The MBs 
were modified on the basis of a previous publication50. Briefly, 3 μl MBs were 
activated with 50 mg ml−1 EDC/sulfo-NHS in MES buffer (25 mM, pH 5) for 
35 min followed by capture antibody immobilization (25 μg ml−1 in MES buffer) 
for 15 min. After de-activation with 1 M ethanolamine in phosphate buffer (0.1 M, 
pH 8), MBs were incubated in 25 μl standards prepared in 1% BSA or serum 
samples diluted five times in 1% BSA for 15 min. From here, the beads were 
rinsed with 1% BSA twice after each binding step. Next, the MBs were incubated 
in 25 μl of biotin-detector antibody (1.0 μg ml−1) in 1% BSA for 30 min followed 
by 15 min in streptavidin–peroxidase conjugate (2,500×) prepared in 1% BSA. 
The amperometric detection was carried out by applying a constant potential of 
−0.2 V to MBs resuspended in 45 μl 1 mM hydroquinone, and 5 μl 5 mM H2O2 
was pipetted onto the screen-printed carbon electrodes when background current 
stabilized.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The main data supporting the results in this study are available within the 
paper and its Supplementary Information. Source data for Figs. 4 and 5 and for 
Supplementary Figs. 36 and 39–41 are provided with this paper. All raw and 
analysed datasets generated during the study are available from the corresponding 
author on request. Source data are provided with this paper.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Mbed was used to program the microcontroller. CH Instrument was used for off-body sensor data collection. Comsol was used for the 
simulations.

Data analysis Origin 2018 was used to analyse and plot all the data, and to calculate the statistical parameters.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Source data for Figs. 4 and 5 and for 
Supplementary Figs. 36 and 39–41 are provided with this paper. All raw and analysed datasets generated during the study are available from the corresponding 
author on request.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size For the on-body evaluation of the wearable sensor, 13 healthy subjects were recruited; for the sweat BCAA study, 10 normal-weight healthy 
subjects, 7 overweight or obese subjects, and 3 obese T2DM patients were involved; for COVID-19 metabolic fingerprint analysis, 8 COVID-19-
positive and 8 COVID-19-negative samples were used. Sample sizes were chosen on the basis of standards in the literature for proof-of-
concept experiments.

Data exclusions No data were excluded.

Replication All attempts at replication were successful when following the device-fabrication process described in the paper.

Randomization The devices were fabricated with the same process and tested in all participants under same conditions. Randomization was therefore not 
relevant to the study. 

Blinding Blinding was not relevant, because a blinding process wouldn't influence the sampling result.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Normal-weight healthy individuals with a body mass index (BMI) of 18.5 to 24.9 kg m-2 with fasting serum glucose < 100 mg 
dL-1 (Healthy); Overweight/obese individuals with a BMI of 25 to 35 kg m-2 and fasting serum glucose < 6 mg dL-1 
(Overweight/Obesity); Obese individuals with a BMI of 25 to 35 kg m-2 and fasting serum glucose >= 126 mg dL-1 (Obesity & 
T2DM). COVID-19-positive and COVID-19-negative serum samples were purchased from RayBiotech, Inc.

Recruitment The participating subjects were recruited from Caltech campus, UCLA hospital and the neighboring communities through 
advertisement by posted notices, word of mouth, and email distribution. There were no self-selection biases or other biases.

Ethics oversight California Institute of Technology

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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